
SOFTWARE ENGINEERING

Lecture 6
Networks and
Communication
Department

1

By: Latifa ALrashed

Outline

Networks and Communication Department

q  Define the concept of the software life cycle in software engineering.

q  Identify the system development life cycle (SDLC).

q  Describe two major types of development process, the waterfall and
 incremental models.

q  Discuss the analysis phase and describe two separate approaches in the
 analysis phase: procedure-oriented analysis and object-oriented analysis.

q  Discuss the design phase and describe two separate approaches in the
 design phase: procedure-oriented design and object-oriented design.

q  Describe the implementation phase and recognize the quality issues in this
 phase.

q  Describe the testing phase and distinguish between glass-box testing and
 blackbox testing.

q  Show the importance of documentation in software engineering and
 distinguish between user documentation, system documentation and
 technical documentation.

The software lifecycle

Networks and Communication Department

¨  A fundamental concept in software engineering is the
software lifecycle.

¨  Software, like many other products, goes through a
cycle of repeating phases.

Figure 10.1 The software lifecycle

The software lifecycle (Cont.)

Networks and Communication Department

¨  Software is first developed by a group of developers.
¨  Usually it is in use for a while before modifications are

necessary.
¨  The two steps, use and modify, continue until the

software becomes obsolete.
¨  By “obsolete”, we mean that the software loses its

validity because of inefficiency, obsolescence of the
language, major changes in user requirements, or other
factors.

Developing Information Systems

Networks and Communication Department

¨  System Development Methodology is a standard
process followed in an organization to conduct all
the steps necessary to analyze, design, implement,
and maintain information systems.

Systems Development Life Cycle (SDLC)

Networks and Communication Department

¨  Traditional methodology used to develop, maintain,
and replace information systems.

¨  Phases in SDLC:
¤  Planning
¤  Analysis
¤  Design
¤  Implementation
¤  Maintenance

FIGURE
The systems development life cycle

Systems Development Life Cycle (SDLC)
(Cont.)

Networks and Communication Department

¨  Planning – an organization’s total information
system needs are identified, analyzed, prioritized,
and arranged

¨  Analysis – system requirements are studied and
structured

¨  Design – a description of the recommended
solution is converted into logical and then physical
system specifications

Systems Development Life Cycle (SDLC)
(Cont.)

Networks and Communication Department

¨  Logical design – all functional features of the system
chosen for development in analysis are described
independently of any computer platform

¨  Physical design – the logical specifications of the
system from logical design are transformed into the
technology-specific detai ls from which al l
programming and system construction can be
accomplished

¨  Implementation – the information system is coded,
tested, installed and supported in the organization

¨  Maintenance – an informat ion sys tem is
systematically repaired and improved

Development process models

Networks and Communication Department

¨  There are several models for the development
process. We discuss the two most common here:
the waterfall model and the incremental model.

¨  The waterfall model is a very popular model
for the software development process.

The waterfall model

Networks and Communication Department
Figure 10.2 The waterfall model

The waterfall model (Cont.)

Networks and Communication Department

¨  In this model, the development process flows in only
one direction. This means that a phase cannot be
started until the previous phase is completed.

¨  For example, the entire design phase should be
finished before the implementation phase can be
started.

¨  There are advantages and disadvantages to the
waterfall model.

The waterfall model (Cont.)

Networks and Communication Department

¨  Pros:
¤ Each phase is completed before the next phase starts;
¤ For example, the group that works on the design phase

knows exactly what to do because they have the
complete results of the analysis phase.

¤ The testing phase can test the whole system because
the entire system under development is ready.

The waterfall model (Cont.)

Networks and Communication Department

¨  Cons:
¤ System requirements “locked in” after being

determined (can't change)
¤ Limited user involvement (only in requirements phase)
¤ Too much focus on milestone deadlines of SDLC

phases to the detriment of sound development
practices.

¤ The difficulty in locating a problem: if there is a
problem in part of the process, the entire process must
be checked.

The incremental model

Networks and Communication Department

¨  In the incremental model, software is developed
in a series of steps.

Figure 10.3 The incremental model

The incremental model (Cont.)

Networks and Communication Department

¨  The developers first complete a simplified version of
the whole system.

¨  This version represents the entire system but does not
include the details.

¨  In the second version, more details are added, while
some are left unfinished, and the system is tested again.

¨  If there is a problem, the developers know that the
problem is with the new functionality,

¨  they do not add more functionality until the existing
system works properly.

¨  This process continues until all required functionality
has been added.

ANALYSIS PHASE

Networks and Communication Department

¨  The development process starts with the analysis
phase.

¨  This phase results in a specification document that
shows what the software will do without specifying
how it will be done.

¨  The analysis phase can use two separate
approaches , depending on whether the
implementation phase is done using a procedural
programming language or an object-oriented
language. We briefly discuss both in this section.

Procedure-oriented analysis

Networks and Communication Department

¨  Procedure-oriented analysis: is the analysis process
used if the system implementation phase will use a
procedural language. The specification in this case
may use several modeling tools, but we discuss
only a few of them here.

Data flow diagrams

Networks and Communication Department

¨  Data flow diagrams show the movement of
data in the system.

¨  They use four symbols: a square box shows
the source or destination of data, a rectangle
with rounded corners shows the process (the
action to be performed on the data), an open-
ended rectangle shows where data is stored,
and arrows shows the flow of data.

Figure 10.4 An example of a data flow diagram

Data Flow Diagramming Rules
TABLE 7-2 Rules Governing Data Flow Diagramming

Data Flow Diagramming Rules (Cont.)
TABLE 7-2 Rules Governing Data Flow Diagramming (cont.)

Data flow diagram example

Networks and Communication Department

¨  Figure 10.4 shows a simplified version of a booking
system in a small hotel that accepts reservation from
potential guests through Internet and confirms or
denies the reservation based on available vacancies.

Procedure-oriented analysis (Cont.)

Networks and Communication Department

¨  Entity-relationship diagrams
¤  Another modeling tool used during the analysis phase is the

entity-relationship diagram.
¤  The database designer creates an ER diagram to show the entities

for which information needs to be stored and the relationship
between those entities.

¨  State diagrams
¤  State diagrams provide another useful tool that is normally used

when the state of the entities in the system will change in
response to events.

¤  As an example of a state diagram, we show the operation of a
one-passenger elevator. When a floor button is pushed, the
elevator moves in the requested direction. It does not respond to
any other request until it reaches its destination.

State diagrams (Cont.)

Networks and Communication Department

¨  State is represented by rounded rectangle in the state diagram

Figure 10.5 Shows a state diagram for this old-style elevator

Object-oriented analysis

Networks and Communication Department

¨  Object-oriented analysis is the analysis process used if the
implementation uses an object-oriented language. The
specification document in this case may use several tools,
but we discuss only a few of them here.

¨  Use case diagrams
¤ A use-case diagram gives the user’s view of a system:

it shows how users communicate with the system.
¤ A use-case diagram uses four components: system, use

cases, actors and relationships. A system, shown by a
rectangle, performs a function.

Use case diagrams

Networks and Communication Department

¨  The action (Function) in the system are shown by use cases,
which are denoted by rounded rectangles.

¨  An actor is someone or something that uses the system, which
represented by stick figures

Figure 10.6 shows the use case diagram for the old-style elevator

Class diagrams

Networks and Communication Department

¨  The next step in analysis is to create a class diagram for the system.
For example, we can create a class diagram for our old-style
elevator. To do so, we need to think about the entities involved in
the system.

Figure 10.7 An example of a class diagram

State chart

Networks and Communication Department

¨  After the class diagram is finalized, a state chart
can be prepared for each class in the class diagram.
A state chart in object-oriented analysis plays the
same role as the state diagram in procedure-
oriented analysis. This means that for the class
diagram of Figure 10.7, we need to have a four-
state chart.

DESIGN PHASE

Networks and Communication Department

¨  The design phase defines how the system will
accomplish what was defined in the analysis
phase. In the design phase, all components of the
system are defined.

¨  Procedure-oriented design:
¤  In procedure-oriented design we have both

procedures and data to design. We discuss a category
of design methods that concentrate on procedures. In
procedure-oriented design, the whole system is
divided into a set of procedures or modules.

Structure charts

Networks and Communication Department

¨  A common tool for illustrating the relations between
modules in procedure-oriented design is a structure
chart. For example, the elevator system whose state
diagram is shown in Figure 10.5 can be designed as a
set of modules shown in the structure chart in Figure
10.8.

Figure 10.8 A structure chart

Modularity

Networks and Communication Department

¨  Modularity means breaking a large project into
smaller parts that can be understood and handled
easily.

¨  In other words, modularity means dividing a large
task into small tasks that can communicate with each
other.

¨  The structure chart discussed in the previous section
shows the modularity in the elevator system. There
are two main concerns when a system is divided into
modules: coupling and cohesion

Modularity (Cont.)

Networks and Communication Department

¨  Coupling is a measure of how tightly two modules
are bound to each other.

¨  The more tightly coupled, the less independent they
are.

¨  Since the objective is to make modules as
independent as possible, we want them to be
loosely coupled.

Coupling between modules in a software system
must be minimized.

Modularity (Cont.)

Networks and Communication Department

¨  Another issue in modularity is cohesion. Cohesion
is a measure of how closely the modules in a
system are related. We need to have maximum
possible cohesion between modules in a software
system.

Cohesion between modules in a software system
must be maximized.

Object-oriented design

Networks and Communication Department

¨  In object-oriented design the design phase continues by
elaborating the details of classes.

¨  a class is made of a set of variables (attributes) and a
set of methods. The object-oriented design phase lists
details of these attributes and methods. Figure below
shows an example of the details of our four classes
used in the design of the old-style elevator.

Figure 10.9 An example of classes with attributes and methods

IMPLEMENTATION PHASE

Networks and Communication Department

¨  In the waterfall model, after the design phase is
completed, the implementation phase can start.

¨  In this phase the programmers write the code for
the modules in procedure-oriented design, or
write the program units to implement classes in
object-oriented design.

¨  There are several issues we need to mention in
each case.

Choice of language

Networks and Communication Department

¨  In a procedure-oriented development, the project
team needs to choose a language or a set of
languages.

¨  Although some languages like C++ are
considered to be both a procedural and an object-
oriented language—normally an implementation
uses a purely procedural language such as C.

¨  In the object-oriented case, both C++ and Java are
common.

Software quality

Networks and Communication Department

¨  The quali ty of software created at the
implementation phase is a very important issue.

¨  A software system of high quality is one that
satisfies the user’s requirements, meets the
operating standards of the organization, and runs
efficiently on the hardware for which it was
developed.

¨  However, if we want to achieve a software system
of high quality, we must be able to define some
attributes of quality.

Software quality factors

Networks and Communication Department

¨  Software quality can be divided into three broad
measures : operabi l i ty, main ta inabi l i ty and
transferability. Each of these measures can be further
broken down as shown in Figure below.

Figure 10.10 Quality factors

Software quality factors

Networks and Communication Department

¨  Operability refers to the basic operation of a
system.

¨  Several measures can be mentioned for operability:
accuracy, efficiency, reliability, security, timeliness,
and usability.

Software quality factors (Cont.)

Networks and Communication Department

¨  Maintainability refers to the ease with which a
system can be kept up to date and running
correctly. Many systems require regular changes,
not because they were poorly implemented, but
because of changes in external factors.

¨  Transferability refers to the ability to move data
and/or a system from one platform to another and
to reuse code.

TESTING PHASE

Networks and Communication Department

¨  The goal of the testing phase is to find errors, which
means that a good testing strategy is the one that finds
most errors.

¨  There are two types of testing: glass-box and black-
box.

Figure 10.11 Software testing

Glass-box testing

Networks and Communication Department

¨  Glass-box testing (or white-box testing) is based
on knowing the internal structure of the software.

¨  The testing goal is to determine whether all
components of the software do what they are
designed for.

¨  Glass-box testing assumes that the tester knows
everything about the software.

¨  In this case, the software is like a glass box in
which everything inside the box is visible.

¨  Glass-box testing is done by the software
engineer or a dedicated team.

Glass-box testing (Cont.)

Networks and Communication Department

¨  Glass-box testing that uses the structure of the software
is required to guarantee that at least the following four
criteria are met:
¤  All independent paths in every module are tested at least

once.
¤  All the decision constructs (two-way and multiway) are

tested on each branch.
¤  Each loop construct is tested.
¤  All data structures are tested.

¨  Several testing methodologies have been designed in the
past. We briefly discuss two of them: basis path testing
and control structure testing.

Basis path testing

Networks and Communication Department

¨  Basis path testing was proposed by Tom
McCabe. This method creates a set of test
cases that executes every statement in the
software at least once.

Basis path testing is a method in which each statement in
the software is executed at least once.

Example 10.1

To give the idea of basis path testing and finding the independent
paths in part of a program, assume that a system is made up of only
one program and that the program is only a single loop with the UML
diagram shown in Figure 10.12.

Figure 10.12 An example of basis path testing

Control structure testing

Networks and Communication Department

¨  Control structure testing is more comprehensive than basis
path testing and includes it. This method uses different
categories of tests that are listed below.
¤  Condition testing:

n  Applies to any condition expression in the module.
n  Is designed to check whether all conditions (including simple

conditions and compound conditions)are set correctly.
¤  Data flow testing:

n  Is based on the flow of data through the module. This type of testing
selects test cases that involve checking the value of variables when
they are used on the left side of the assignment statement.

¤  Loop testing:
n  Uses test cases to check the validity of loops. All types of loops are

carefully tested.

Black-box testing

Networks and Communication Department

¨  Black box testing gets its name from the concept
of testing software without knowing what is
inside it and without knowing how it works.

¨  In other words, the software is like a black box
into which the tester cannot see. Black-box
testing tests the functionality of the software in
terms of what the software is supposed to
accomplish, such as its inputs and outputs.

¨  Several methods are used in black-box testing,
discussed below.

Black-box testing (Cont.)

Networks and Communication Department

¨  Exhaustive testing:
¤  The best black-box test method is to test the software for all

possible values in the input domain. However, in complex
software the input domain is so huge that it is often
impractical to do so.

¨  Random testing:
¤  In random testing, a subset of values in the input domain is

selected for testing. It is very important that the subset be
chosen in such a way that the values are distributed over the
domain input. The use of random number generators can be
very helpful in this case.

Black-box testing (Cont.)

Networks and Communication Department

¨  Boundary-value testing:
¤ Errors often happen when boundary values are

encountered. For example, if a module defines that one
of its inputs must be greater than or equal to 100, it is
very important that module be tested for the boundary
value 100. If the module fails at this boundary value, it
is possible that some condition in the module’s code
such as x ≥ 100 is written as x > 100.

DOCUMENTATION

Networks and Communication Department

¨  For software to be used properly and maintained
efficiently, documentation is needed. Usually, three
separate sets of documentation are prepared for
so f tware : use r documenta t ion , sys tem
documentation and technical documentation.

¨  If the software has problems or it is modified after
release, they must be documented too.

¨  Documentation only stops when the package
becomes obsolete

Documentation is an ongoing process.

User documentation

Networks and Communication Department

¨  To run the software system properly, the users need
documentation, traditionally called a user guide, that
shows how to use the software step by step. User
guides usually contains a tutorial section to guide the
user through each feature of the software.

¨  A good user guide can be a very powerful marketing
tool: the importance of user documentation in
marketing cannot be over-emphasized. User guides
should be written for both the novice and the expert
users, and a software system with good user
documentation will definitely increase sales.

System documentation

Networks and Communication Department

¨  System documentation defines the software itself.
It should be written so that the software can be
maintained and modified by people other than the
original developers. System documentation
should exist for all four phases of system
development.

¨  In the analysis phase, the information collected
should be carefully documented. In addition, the
analysts should define the sources of information.

System documentation (Cont.)

Networks and Communication Department

¨  In the design phase, the tools used in the final copy
must be documented. For example, the final copy of
the chart should be documented with complete
explanations.

¨  In the implementation phase, every module of the code
should be documented. In addition, the code should be
self-documenting as far as possible using comments
and descriptive headers.

¨  Finally, the developers must carefully document the
testing phase. Each type of test applied to the final
product should be mentioned along with its results.

Technical documentation

Networks and Communication Department

¨  Technical documentation describes the installation
and the servicing of the software system.
Installation documentation defines how the
software should be installed on each computer, for
e x a m p l e , s e r v e r s a n d c l i e n t s . S e r v i c e
documentation defines how the system should be
maintained and updated if necessary.

References

Networks and Communication Department

¨  Behrouz Forouzan and Firouz Mosharraf,
“Foundations of computer science”, Second
edition, chapter10, pp. 271-284

¨  Jeffrey A. Hoffer ,Joey F. George
, and Joseph S. Valacich, Modern Systems Analysis
and Design, Sixth Edition, Chapter 1.

